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Goal :

e Give motivation for the delta sets.

e Improve the bounds for the minimum distance of AG codes.



F : finite field

e [F-linear code C of length n : linear subspace of F”

Hamming distance of x,y € F" : d(x,y) = [{i : x; # yi}|

Minimum distance of C :

d(C) =min{d(x,y): x,y €C,x £y}
=min{d(x,0): x € C,x # 0}.

e x * y : coordinate-wise product of x and y



Algebraic geometric code

X /F : algebraic curve (absolutely irreducible, smooth, projective) of genus
g over finite field F

e F(X) : function field of X/IF

L(A) == {f e FCX\{0} : (f)+A>0}U{0}

Q(A) =={w € AX)\{0} : () > A }U{0}
e K : canonical divisor

e Pi,..., P, ndistinct rational points on X
e D=P +---+P,

e G : divisor, supp(G) Nsupp(D) =0



Algebraic geometric code

Example

(f)=5P—3Q

e f has zeros of order 5 at P
e f has poles of order 3 at @
e deg((f))=5-3=2

If A=4P —2Q then L(A) := {f e F(X)\{0} : (f)+ A >0 }U{0} consists
of all elements f € F(X) such that

e f has zeros of order at least 2 at @

e f may have a pole at P of order at most 4



Algebraic geometric code

Algebraic geometric code :

aL : L(G) — F", fe (f(P),...,f(Pn)),

ag : QG -D) — F", wws (resp,(w),...,resp,(w))
Im(aL) = C.(D, G)

Im(aQ) = CQ(D, G)

Algebraic geometric code C/(D, G) :
Ci(D, G) :={(f(P1),...,f(Pn) | f€L(G)} CF"

Algebraic geometric code Co(D, G) :
Ca(D, G) := {(resp, (w), ..., resp,(w) | w € Q(G — D)} CEF"



Algebraic geometric code

e C/(D,G) and Cq(D, G) are dual to each other
e C(D,G)t = Ca(D,G) = C(D,K+ D — G)

e Fora,beZand P,Q € X(F),

G =aP : one-point code
G =aP+ bQ : two-point code



Order bounds of the minimum distance

e Hamming distance between two nonempty subsets X, Y C F" :

minimum of {d(x,y):x€ X,y € Y}

e For a proper subcode C' C C, the minimum distance of the collection of
cosets C/C’ is

d(c/C) =min{d(x+C",y+C'):x,y €C,x -y ¢C'}
=min{d(x,0): x € C,x £C'}.



Order bounds for the minimum distance

Theorem (Coset bound)
Let C/C1 be an extension of F-linear codes with corresponding extension of
dual codes D; /D such that dimC/C; = dimD;/D = 1.

If there exist vectors a1, ...,aw and by, ..., b, such that
aixbj €D fori+j<w,
ajxbj e DI\D fori+j=w+1,

then d(C/C1) > w.

Corollary Let C/C’ be an extension of F-linear codes of length n. For
co>C" >,
d(c/c") = min{d(C/C"),d(C" /C")}.

d(C) = min{d(C/C"), d(C")}.



Hermitian curve

Hermitian curve X/Fp : y?+y = x7"!

e Number of rational points : ¢° +1

e Genus: g=gq(q—1)/2

e P, : the point at infinity of X

e Py : the point (0,0)

o K=(q—2)H, where H~ (q+1)Poc ~ (g+1)Po



Hermitian curve

Example of one-point Hermitian code

X : y4—|—y:x5 over Fig
Number of rational points = 65 : Pi,..., P, P
g==6

Canonical divisor : K = 10P,,



Hermitian curve

For f € F16(X)\{0},
(f)oo : the pole divisor of f
(f)o : the zero divisor of f
(f) = (o= (e
Weierstrass semigroup of the point Puo:
H(Ps) ={n €Ny :3 f € Fi6(X) with (f)oc = nPso}
(X)oo = 4P
(¥)oo = 5P
Gap numbers : 1,2,3,6,7,11

H(P..) = (4,5) = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16,...}



Hermitian curve

Question :
For G =17P and D = Py + - - - + Pea,

d(Ca(D, G))=?



Hermitian curve

C/C = Ca(D,17P)/Ca(D,18Ps) +— D1/D = C (D, 18P )/ C(D,17P)

If there exist vectors a1,...,aw and by, ..., b, such that
aix b € D= C(D,17P) fori+j<w,
aix bj € D1\D = C (D, 18P )\C.(D,17Ps) fori+j=w+1,

then d(C/C1) > w.



Hermitian curve

e In other words, if there exist rational functions fi, f,...,f, and
g1, &2,---,8w such that

7‘;gJ € L(17Poo) for i—|—j < w,
figi € L(18Poo)\L(17Ps) for i+ j=w +1,

then d(C/C1) > w.

o figi € L(18P)\L(17Ps) means that fig; has a pole only at Po, with
exact pole order 18, that is, (figj)oo = 18P.



Hermitian curve

i L B fa K f . fo
2 xy y2 3 Py xy? Y3 XA K3y x2y?
0 4 5 8 9 10 12 13 14 15 16 17 18
81 1 0 18
&2 X 4 18
& 5 18
g x? 8 18
g Xy 9 18
g Y2 10 18
x3 12
gr x?y 13 18
g xy? 14 18
y3 15
416
3y 17
g x°y?> 18 |18




Hermitian curve

It follows from the figure that

figi € L(17Px) fori+j <09,
figi € L(18Px)\L(17Ps) for i+ j = 10.

Thus d(C/C1) > 9.



Hermitian curve

v v v v v v v v v
o ++ 2 3 4 5 6 #+ 8 9 10 ¥ 12 13 14 15 16 17 18
18 17 16 15 14 13 12 &% 10 9 8 +# 6 5 4 3 2 + 0

Applying the same method to Co(D,18Ps)/Ca(D,19Ps) we have

d(Ca(D,18P.)/Ca(D, 19P.)) > 8.



Hermitian curve

>9 Ca(D,17Ps)\Ca(D, 18P)

>8 | Ca(D,18Ps)\Ca(D,19P.)

>9 | Co(D,19P.)\Ca(D,20Ps)

>10 | Ca(D,20Ps)\Ca(D,21Py)

By taking the minimum of the weights of the codewords, we have

d(Ca(D, G)) = 8.



Hermitian curve

Notation : Co(D, G) = C(a, b), where G = aPs + bP,
In two-point Hermian code with g =4 :

If G =20P + Po then what is d(C(20Ps + Po))?
C(20Po + Po) — C(21Ps + Po)

C(20Pas + Po) —+ C(20Ps + 2P)



Hermitian curve

Clah)

N

Cla+1,b) Clab+)

SN N

C(at2,b) C(a+1_,b+1) C(a,b+2)

0 00 00 0



Order bounds for the minimum distance

e For the Feng-Rao bound the filtration is determined by the choice of a
point P and takes the form

Ca(D,G) D Ca(D, G + P) D Co(D, G +2P) > --- D {0}

e Beelen allows the addition of different points at different steps in the
filtration.



Order bounds forthe minimum distance

d(C.(D, G)) = min{deg A: 0 < A< D | L(G — D+ A) # L(G — D)}

— min{degA:0< A< D|LA—C)#L(-C)}, for C=D—-G
d(Ca(D, G)) = min{degA:0 < A< D |Q(G - A) # Q(G)}

= min{degA:0< A< D|L(K—G+A)#LK—G)}

=min{degA: 0 <AL D|LA-C)#L(—-C)}, forC=G—-K



Order bounds for the minimum distance

Notation
C/C = C.(D,G)/C(D, G — P)
D1/D = Co(D, G — P)/Ca(D, G)

d(C/Ci) =min{deg A 0<ALD|LA-C)#L(A—C—P)},
forC=D-G

d(D1/D) = min{degA:0< A< D|LA-C)#L(A-C—-P)},
forC=G-K-P

P¢Dand0< A<D = L(A)#L(A-P)
This motivates the following definition :

Tp(C)={A: L(A)# LA—P)AL(A—C) # L(A— C — P)}



Order bounds for the minimum distance

Definition :

Mp={A: L(A) # L(A~ P)}
Mp(C)={A€Tp:A—CeTlp}
1p(C) = min{deg A : A € [p(C)}

AP(C):{AEFP:A—CQFP}



Order bounds for the minimum distance

Theorem

For a rational point P ¢ D,
d(Cu(D, G)/CL(D, G — P)) > 7p(D — G).

d(Ca(D, G)/Ca(D, G + P)) = 7p(G — K).



Order bounds for the minimum distance

All divisors of sufficiently large degree belong to I'p(C) while the degree of a
divisor in Ap(C) is bounded.

AcDp(C) & K+ C+P—-AcAp(C).

For Ae Ap(C), 0 < degA <degC+2g—1.



Order bounds for the minimum distance

Theorem (Coset bound for divisors) :

Let {A1 < A, <--- < Au} C Ap(C) be a sequence of divisors with
Aiy1 > Ai+ P, fori=1,...,w—1. Then deg A > w, for every divisor
A € T'p(C) with support disjoint from A, — A;

Sketch of Proof :

We obtain two sequences of subspaces.

L(Aw) 2 L(Aw — P) 2 L(Aw-1) 2 L(Aw—1—P) 2 -
-2 L(A2) 2 L(A2 — P) 2 L(A1) 2 L(AL — P).

QA —CO)C QA —C-P)C QA1 —C) QA1 —C—-P) C
CA-C) QA -C-P)C QAL —C) QA - C—P).
Fori=1,2,...,w, choose

fi € L(A,)\L(A, — P) and ni € Q(A, - C- P)\Q(A, — C)



Order bounds for the minimum distance

For a given divisor B,
Ap(B,C)={B+iP:ie€Z}nAp(C).

Corollary :

For any choice of divisor B,

7p(C) = #4p(B, C).



Discrepancies

Lemma :
For distinct points P and Q, Ap(Q) = Ag(P).
Sketch of Proof :

)



Discrepancies

Definition :

Let D(P, Q) = Ap(Q) = Ag(P). A divisor A is called a discrepancy for the
points P and Q if A€ D(P, Q).

Theorem :
dimL(B+aP + bQ) =#{B+iP+jQ € D(P,Q):i<aandj< b}

Definition :

Dg(P,Q)=D(P,Q)N{B+iP+jQ:i,j€cZ}.



Discrepancies

Theorem :

For distinct points P and Q, and for a given divisor B, there exist functions
o = op and T = 7 such that

Ds(P,Q)={B+7(j)P+jQ:j €L} ={B+iP+0(i)Q:icZ}.

o = op, T = 78 : mutual inverses and describe permutations of the integers.
For m minimal such that mP ~ mQ, the functions o, 7 are determined by their
images on a full set of representatives for Z/mZ. and Dg(P, Q) consists of m
distinct divisor classes.



Discrepancies

Hermitian Curve over F .
X/Fp:y?+y=x7""

e For P,Q e X(Fp), mP ~ mQ for m=q+1
e The m inequivalent divisor classes in Do(P, Q) with support in P and Q
are represented by the divisors
dH —dP —dQ, ford=0,1,...,q.
e Do(P,Q)={d(qQ@—-P)+j(g+1)(P-Q):d=0,1,...,q,j € Z}.



Discrepancies

Suzuki Curve over F,
Yi+y=xP(xI+x), q=2" qg=2q=2""

e Number of rational points : ¢ + 1

e Genus: g =qo(q—1)

e P, : the unique pole of x

e Py : the unique zero of both x and y

e Semigroup of Weierstrass nongaps at P
=(q,9+ qo,q9+2q0,g+2q0+1=m)
e K~2(qo—1)H, where H~ (g +2qo+ 1)Psc ~ (g +2g0 + 1)Po



Discrepancies

Theorem

The m inequivalent divisor classes in Dyo(P, Q) are represented by

iDO +jD27 for 0 S IaJ S qo, and
Di+i'Do+j' D2, for0<i',j' <qo—1.

The given representatives correspond one-to-one to the m divisors
D(a, b) = (a+ qo)H — ((a+ q0)(qo + 1) + bqo) P — ((a+ q0)(qo + 1) — bqo)Q,

for |a| + |b] < qo.



Discrepancies

Suzuki curve over Fg :
X /Fg Y 4y =x104 3
g=14 N =656 m=13
The m inequivalent divisor classes in D(P, Q) with support in P and @ are
represented by the divisors
(0,0) : (-5,12) : (—10,24)
: (_37 10) : (_87 22)
(-1,8) : (—6,20) : (—11,32)
: (_47 18) : (_97 30)
(—2,16) . (—7,28) . (—12,40)



Sequences inside delta sets

Theorem :
Let A= kP +/Q and C = iP 4+ Q. Let
k™ +0=do(l—j)+i+], d~ = dp(k™) — do(f — j).
kt + 0= do(¥), dt =dg(l) — dp(k* — ).
Then
(1) A¢Ap(C) NA—QeAp(C) & k=k ANi+j>d .
(2) AcAp(C) N A—QEAp(C) & k=k" Ni+j>d".

kP+€Q cElp<<= k+/¢ > dp(k)

kP+10Q €T < k+{>dg(¥)

For mP ~ mQ, the functions dp and dg are defined modulo m.
dp(k) = k + o(k) and do(¢) = £+ 7(¢)



Order bounds for the minimum distance

Example :

For the Suzuki curve over F3;, let C = 55P + 31Q. The full grid contains a
unique maximal sequence of length 90 in row ¢ = —5,
Ap(55P + 31Q) D{A; =36P —5Q, ..., As = 163P — 5Q}
U {A46 = 180P — SQ, - ,Ago = 307P — 5Q}



THANK YQOU!



